Autor: Moshe Marcus
ISBN-13: 9783110305159
Einband: Buch
Seiten: 261
Format: 244x177x20 mm
Sprache: Englisch

Nonlinear Second Order Elliptic Equations Involving Measures

21, De Gruyter Series in Nonlinear Analysis and Applications
In den Warenkorb
139,95 €
Exklusives Verkaufsrecht für: Gesamte Welt.
1 Linear second order elliptic equations with measure data 51.1 Linear boundary value problems with L1 data. . . . . . . . . . . . . 51.2 Measure data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81.3 M-boundary trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181.4 The Herglotz - Doob theorem . . . . . . . . . . . . . . . . . . . . . . 241.5 Sub-solutions, super-solutions and Kato's inequality. . . . . . . . . . 261.6 Boundary Harnack principle. . . . . . . . . . . . . . . . . . . . . . . 361.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 Nonlinear second order elliptic equations with measure data 432.1 Semilinear problems with L1 data . . . . . . . . . . . . . . . . . . . . 432.2 Semilinear problems with bounded measure data . . . . . . . . . . . 472.3 Subcritical non-linearities . . . . . . . . . . . . . . . . . . . . . . . . 552.3.1 Weak Lp spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 562.3.2 Continuity of G and P relative to Lpw norm . . . . . . . . . . 592.3.3 Continuity of a superposition operator. . . . . . . . . . . . . 612.3.4 Weak continuity of Sg . . . . . . . . . . . . . . . . . . . . . . . 652.3.5 Weak continuity of Sg@. . . . . . . . . . . . . . . . . . . . . . 692.4 The structure of Mg. . . . . . . . . . . . . . . . . . . . . . . . . . . . 742.5 Remarks on unbounded domains . . . . . . . . . . . . . . . . . . . . 802.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813 The boundary trace and associated boundary value problems. 833.1 The boundary trace . . . . . . . . . . . . . . . . . . . . . . . . . . . 833.1.1 Moderate solutions . . . . . . . . . . . . . . . . . . . . . . . . 833.1.2 Positive solutions . . . . . . . . . . . . . . . . . . . . . . . . . 883.1.3 Unbounded domains . . . . . . . . . . . . . . . . . . . . . . . 983.2 Maximal solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 983.3 The boundary value problem with rough trace. . . . . . . . . . . . . 1013.4 A problem with fading absorption. . . . . . . . . . . . . . . . . . . . 1083.4.1 The similarity transformation and an extension of the Keller- Osserman estimate. . . . . . . . . . . . . . . . . . . . . . . 1093.4.2 Barriers and maximal solutions. . . . . . . . . . . . . . . . . . 1113.4.3 The critical exponent. . . . . . . . . . . . . . . . . . . . . . . 1163.4.4 The very singular solution. . . . . . . . . . . . . . . . . . . . 1193.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1304 Isolated singularities 1334.1 Universal upper bounds . . . . . . . . . . . . . . . . . . . . . . . . . 1334.1.1 The Keller-Osserman estimates . . . . . . . . . . . . . . . . . 1334.1.2 Applications to model cases . . . . . . . . . . . . . . . . . . 1384.2 Isolated singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . 1404.2.1 Removable singularities . . . . . . . . . . . . . . . . . . . . . 1404.2.2 Isolated positive singularities . . . . . . . . . . . . . . . . . . 1424.2.3 Isolated signed singularities . . . . . . . . . . . . . . . . . . . 1514.3 Boundary singularities . . . . . . . . . . . . . . . . . . . . . . . . . . 1584.3.1 Upper bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 1584.3.2 The half space case . . . . . . . . . . . . . . . . . . . . . . . . 1604.3.3 The case of a general domain . . . . . . . . . . . . . . . . . . 1674.4 Boundary singularities with fading absorption . . . . . . . . . . . . . 1764.4.1 Power-type degeneracy . . . . . . . . . . . . . . . . . . . . . . 1764.4.2 A strongly fading absorption . . . . . . . . . . . . . . . . . . 1804.5 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1874.5.1 General results of isotropy . . . . . . . . . . . . . . . . . . . . 1874.5.2 Isolated singularities of super-solutions . . . . . . . . . . . . 1884.6 Notes and comments . . . . . . . . . . . . . . . . . . . . . . . . . . . 1905 Classical theory of maximal and large solutions 1955.1 Maximal solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1955.1.1 Global conditions . . . . . . . . . . . . . . . . . . . . . . . . . 1955.1.2 Local conditions . . . . . . . . . . . . . . . . . . . . . . . . . 2005.2 Large solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2015.2.1 General nonlinearities . . . . . . . . . . . . . . . . . . . . . . 2015.2.2 The power and exponential cases . . . . . . . . . . . . . . . . 2065.3 Uniqueness of large solutions . . . . . . . . . . . . . . . . . . . . . . 2105.3.1 General uniqueness results . . . . . . . . . . . . . . . . . . . . 2115.3.2 Applications to power and exponential types nonlinearities . 2195.4 Equations with forcing term . . . . . . . . . . . . . . . . . . . . . . . 2215.4.1 Maximal and minimal large solutions . . . . . . . . . . . . . . 2225.4.2 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2265.5 Notes and comments . . . . . . . . . . . . . . . . . . . . . . . . . . . 2306 Further results on singularities and large solutions 2336.1 Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2336.1.1 Internal singularities . . . . . . . . . . . . . . . . . . . . . . . 2336.1.2 Boundary singularities . . . . . . . . . . . . . . . . . . . . . . 2446.2 Symmetries of large solutions . . . . . . . . . . . . . . . . . . . . . . 2596.3 Sharp blow-up rate of large solutions . . . . . . . . . . . . . . . . . . 2686.3.1 Estimates in an annulus . . . . . . . . . . . . . . . . . . . . . 2696.3.2 Curvature secondary effects . . . . . . . . . . . . . . . . . . . 2756.4 Notes and comments . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
In the last 40 years semi-linear elliptic equations became a central subject of study in the theory of nonlinear partial differential equations. On the one hand, the interest in this area is of a theoretical nature, due to its deep relations to other branches of mathematics, especially linear and nonlinear harmonic analysis, dynamical systems, differential geometry and probability. On the other hand, this study is of interest because of its applications. Equations of this type come up in various areas such as problems of physics and astrophysics, curvature problems in Riemannian geometry, logistic problems related for instance to population models and, most importantly, the study of branching processes and superdiffusions in the theory of probability. The aim of this book is to present a comprehensive study of boundary value problems for linear and semi-linear second order elliptic equations with measure data. We are particularly interested in semi-linear equations with absorption. The interactions between the diffusion operator and the absorption term give rise to a large class of nonlinear phenomena in the study of which singularities and boundary trace play a central role. This book is accessible to graduate students and researchers with a background in real analysis and partial differential equations.
Autor: Moshe Marcus, Laurent Véron
Moshe Marcus, Technion, Haifa, Israel; Laurent Véron, Université François Rabelais, Tours, France.

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.

 

Rezensionen

Autor: Moshe Marcus
ISBN-13:: 9783110305159
ISBN: 3110305151
Erscheinungsjahr: 01.01.2014
Verlag: Gruyter, Walter de GmbH
Gewicht: 584g
Seiten: 261
Sprache: Englisch
Sonstiges: Buch, 244x177x20 mm